Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
PLoS Med ; 21(5): e1004401, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38701084

RESUMO

BACKGROUND: Emerging evidence suggests that shortened, simplified treatment regimens for rifampicin-resistant tuberculosis (RR-TB) can achieve comparable end-of-treatment (EOT) outcomes to longer regimens. We compared a 6-month regimen containing bedaquiline, pretomanid, linezolid, and moxifloxacin (BPaLM) to a standard of care strategy using a 9- or 18-month regimen depending on whether fluoroquinolone resistance (FQ-R) was detected on drug susceptibility testing (DST). METHODS AND FINDINGS: The primary objective was to determine whether 6 months of BPaLM is a cost-effective treatment strategy for RR-TB. We used genomic and demographic data to parameterize a mathematical model estimating long-term health outcomes measured in quality-adjusted life years (QALYs) and lifetime costs in 2022 USD ($) for each treatment strategy for patients 15 years and older diagnosed with pulmonary RR-TB in Moldova, a country with a high burden of TB drug resistance. For each individual, we simulated the natural history of TB and associated treatment outcomes, as well as the process of acquiring resistance to each of 12 anti-TB drugs. Compared to the standard of care, 6 months of BPaLM was cost-effective. This strategy was estimated to reduce lifetime costs by $3,366 (95% UI: [1,465, 5,742] p < 0.001) per individual, with a nonsignificant change in QALYs (-0.06; 95% UI: [-0.49, 0.032] p = 0.790). For those stopping moxifloxacin under the BPaLM regimen, continuing with BPaL plus clofazimine (BPaLC) provided more QALYs at lower cost than continuing with BPaL alone. Strategies based on 6 months of BPaLM had at least a 93% chance of being cost-effective, so long as BPaLC was continued in the event of stopping moxifloxacin. BPaLM for 6 months also reduced the average time spent with TB resistant to amikacin, bedaquiline, clofazimine, cycloserine, moxifloxacin, and pyrazinamide, while it increased the average time spent with TB resistant to delamanid and pretomanid. Sensitivity analyses showed 6 months of BPaLM to be cost-effective across a broad range of values for the relative effectiveness of BPaLM, and the proportion of the cohort with FQ-R. Compared to the standard of care, 6 months of BPaLM would be expected to save Moldova's national TB program budget $7.1 million (95% UI: [1.3 million, 15.4 million] p = 0.002) over the 5-year period from implementation. Our analysis did not account for all possible interactions between specific drugs with regard to treatment outcomes, resistance acquisition, or the consequences of specific types of severe adverse events, nor did we model how the intervention may affect TB transmission dynamics. CONCLUSIONS: Compared to standard of care, longer regimens, the implementation of the 6-month BPaLM regimen could improve the cost-effectiveness of care for individuals diagnosed with RR-TB, particularly in settings with a high burden of drug-resistant TB. Further research may be warranted to explore the impact and cost-effectiveness of shorter RR-TB regimens across settings with varied drug-resistant TB burdens and national income levels.

2.
Artigo em Inglês | MEDLINE | ID: mdl-38490355

RESUMO

OBJECTIVES: Multidrug-resistant/Rifampicin-resistant tuberculosis (TB) is a major obstacle to successful TB control. The recommendation by the World Health Organization to use bedaquiline, pretomanid, linezolid and moxifloxacin (BPaL(M)) for 6 months, based on results of three trials with high efficacy and low toxicity, has revolutionized treatment options. METHODS: In this study, representatives of the Tuberculosis Network European Trialsgroup (TBnet) in 44/54 countries of the WHO Europe region document the availability of the medicines and drug susceptibility testing (DST) of the BPaL(M) regimen through a structured questionnaire between September to November 2023. RESULTS: 24/44 (54.5%), 42/44 (95.5%), 43/44 (97.7%), and 43/44 (97.7%) had access to pretomanid, bedaquiline, linezolid, and moxifloxacin, respectively. Overall, 23/44 (52.3%) had access to all the drugs composing the BPaL(M) regimen. 7/44 (15.9%), 28/44 (63.6%), 34/44 (77.3%) and 36/44 (81.8%) had access to DST for pretomanid, bedaquiline, linezolid and moxifloxacin, respectively. DST was available for all medicines composing the BPaL(M) regimen in 6/44 (13.6%) countries. CONCLUSION: Only in about half of the countries participating in the survey clinicians have access to all the BPaL(M) regimen drugs. In less than a fifth of countries, a complete DST is possible. Rapid scale up of DST capacity to prevent unnoticed spread of drug resistance and equal access to new regimens are urgently needed in Europe.

3.
Emerg Infect Dis ; 30(4): 831-833, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38526186

RESUMO

In 2021, the World Health Organization recommended new extensively drug-resistant (XDR) and pre-XDR tuberculosis (TB) definitions. In a recent cohort of TB patients in Eastern Europe, we show that XDR TB as currently defined is associated with exceptionally poor treatment outcomes, considerably worse than for the former definition (31% vs. 54% treatment success).


Assuntos
Tuberculose Resistente a Múltiplos Medicamentos , Humanos , Ucrânia/epidemiologia , Moldávia/epidemiologia , Cazaquistão/epidemiologia , Quirguistão/epidemiologia , República da Geórgia/epidemiologia , Tuberculose Resistente a Múltiplos Medicamentos/tratamento farmacológico , Tuberculose Resistente a Múltiplos Medicamentos/epidemiologia
5.
Artigo em Inglês | MEDLINE | ID: mdl-37482332

RESUMO

BACKGROUND: Tuberculosis (TB) is a global health challenge and one of the leading causes of death worldwide. In the last decade, the TB treatment landscape has dramatically changed. After long years of stagnation, new compounds entered the market (bedaquiline, delamanid, and pretomanid) and phase III clinical trials have shown promising results towards shortening duration of treatment for both drug-susceptible (Study 31/A5349, TRUNCATE-TB, and SHINE) and drug-resistant TB (STREAM, NiX-TB, ZeNix, and TB-PRACTECAL). Dose optimization of rifamycins and repurposed drugs has also brought hopes of further development of safe and effective regimens. Consequently, international and WHO clinical guidelines have been updated multiple times in the last years to keep pace with these advances. OBJECTIVES: This narrative review aims to summarize the state-of-the-art on treatment of drug-susceptible and drug-resistant TB, as well as recent trial results and an overview of ongoing clinical trials. SOURCES: A non-systematic literature review was conducted in PubMed and MEDLINE, focusing on the treatment of TB. Ongoing clinical trials were listed according to the authors' knowledge and completed consulting clinicaltrials.gov and other publicly available websites (www.resisttb.org/clinical-trials-progress-report, www.newtbdrugs.org/pipeline/trials). CONTENT: This review summarizes the recent, major changes in the landscape for drug-susceptible and drug-resistant treatment, with a specific focus on their potential impact on patient outcomes and programmatic TB management. Moreover, insights in host-directed therapies, and advances in pharmacokinetics and pharmacogenomics are discussed. A thorough outline of ongoing therapeutic clinical trials is presented, highlighting different approaches and goals in current TB clinical research. IMPLICATIONS: Future research should be directed to individualize regimens and protect these recent breakthroughs by preventing and identifying the selection of drug resistance and providing widespread, affordable, patient-centred access to new treatment options for all people affected by TB.

6.
Emerg Infect Dis ; 29(5): 1046-1050, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37081601

RESUMO

Applying whole-genome-sequencing, we aimed to detect transmission events of multidrug-resistant/rifampin-resistant strains of Mycobacterium tuberculosis complex at a tuberculosis hospital in Chisinau, Moldova. We recorded ward, room, and bed information for each patient and monitored in-hospital transfers over 1 year. Detailed molecular and patient surveillance revealed only 2 nosocomial transmission events.


Assuntos
Infecção Hospitalar , Mycobacterium tuberculosis , Tuberculose Resistente a Múltiplos Medicamentos , Humanos , Antituberculosos/farmacologia , Antituberculosos/uso terapêutico , Mycobacterium tuberculosis/genética , Moldávia/epidemiologia , Infecção Hospitalar/epidemiologia , Infecção Hospitalar/tratamento farmacológico , Farmacorresistência Bacteriana Múltipla , Tuberculose Resistente a Múltiplos Medicamentos/tratamento farmacológico , Tuberculose Resistente a Múltiplos Medicamentos/epidemiologia , Tuberculose Resistente a Múltiplos Medicamentos/diagnóstico , Testes de Sensibilidade Microbiana
7.
Lancet Infect Dis ; 23(4): e122-e137, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36868253

RESUMO

Drug-resistant tuberculosis is a substantial health-care concern worldwide. Despite culture-based methods being considered the gold standard for drug susceptibility testing, molecular methods provide rapid information about the Mycobacterium tuberculosis mutations associated with resistance to anti-tuberculosis drugs. This consensus document was developed on the basis of a comprehensive literature search, by the TBnet and RESIST-TB networks, about reporting standards for the clinical use of molecular drug susceptibility testing. Review and the search for evidence included hand-searching journals and searching electronic databases. The panel identified studies that linked mutations in genomic regions of M tuberculosis with treatment outcome data. Implementation of molecular testing for the prediction of drug resistance in M tuberculosis is key. Detection of mutations in clinical isolates has implications for the clinical management of patients with multidrug-resistant or rifampicin-resistant tuberculosis, especially in situations when phenotypic drug susceptibility testing is not available. A multidisciplinary team including clinicians, microbiologists, and laboratory scientists reached a consensus on key questions relevant to molecular prediction of drug susceptibility or resistance to M tuberculosis, and their implications for clinical practice. This consensus document should help clinicians in the management of patients with tuberculosis, providing guidance for the design of treatment regimens and optimising outcomes.


Assuntos
Mycobacterium tuberculosis , Tuberculose Resistente a Múltiplos Medicamentos , Tuberculose , Humanos , Mycobacterium tuberculosis/genética , Testes de Sensibilidade Microbiana , Antituberculosos/farmacologia , Antituberculosos/uso terapêutico , Tuberculose Resistente a Múltiplos Medicamentos/diagnóstico , Tuberculose Resistente a Múltiplos Medicamentos/tratamento farmacológico , Tuberculose Resistente a Múltiplos Medicamentos/microbiologia , Tuberculose/tratamento farmacológico , Mutação
8.
Clin Microbiol Infect ; 29(6): 751-757, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36842637

RESUMO

OBJECTIVES: To describe long-term treatment outcomes in patients with multi-drug-resistant/rifampicin-resistant tuberculosis (MDR/RR-TB) and validate established outcome definitions for MDR/RR-TB treatment. METHODS: Among patients with MDR/RR-TB admitted to a German MDR/RR-TB referral centre from 1 September 2002 to 29 February 2020, we compared long-term treatment outcomes derived from individual patient follow-up with treatment outcomes defined by WHO-2013, WHO-2021 and the Tuberculosis Network European Trials Group-2016. RESULTS: In a total of 163 patients (mean age, 35 years; standard deviation, 13 years; 14/163 [8.6%] living with HIV; 109/163 [66.9%] men, 149/163 [91.4%] migrating to Germany within 5 years), the treatment of culture-confirmed MDR/RR-TB was initiated. Additional drug resistance to a fluoroquinolone or a second-line injectable agent was present in 15 of the 163 (9.2%) Mycobacterium tuberculosis strains; resistance against both the drug classes was present in 29 of the 163 (17.8%) strains. The median duration of MDR/RR-TB treatment was 20 months (interquartile range, 19.3-21.6 months), with a medium of five active drugs included. The median follow-up time was 4 years (47.7 months; interquartile range, 21.7-65.8 months). Among the 163 patients, cure was achieved in 25 (15.3%), 82 (50.3%) and 95 (58.3%) patients according to the outcome definitions of WHO-2013, WHO-2021, and the Tuberculosis Network European Trials Group-2016, respectively. The lost to follow-up rate was 17 of 163 (10.4%). Death was more likely in patients living with HIV (hazard ratio, 4.28; 95% confidence interval, 1.26-12.86) and older patients (hazard ratio, 1.08; 95% confidence interval, 1.05-1.12; increment of 1 year). Overall, 101/163 (62.0%) patients experienced long-term, relapse-free cure; of those, 101/122 (82.8%) patients with a known status (not lost to-follow-up or transferred out) at follow-up. CONCLUSION: Under optimal management conditions leveraging individualized treatment regimens, long-term, relapse-free cure from MDR/RR-TB is substantially higher than cure rates defined by current treatment outcome definitions.


Assuntos
Infecções por HIV , Mycobacterium tuberculosis , Tuberculose Resistente a Múltiplos Medicamentos , Masculino , Humanos , Adulto , Feminino , Antituberculosos/uso terapêutico , Tuberculose Resistente a Múltiplos Medicamentos/tratamento farmacológico , Tuberculose Resistente a Múltiplos Medicamentos/microbiologia , Rifampina/uso terapêutico , Resultado do Tratamento , Infecções por HIV/tratamento farmacológico
9.
Eur Respir J ; 59(3)2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34503982

RESUMO

RATIONALE: Bedaquiline has been classified as a group A drug for the treatment of multidrug-resistant tuberculosis (MDR-TB) by the World Health Organization; however, globally emerging resistance threatens the effectivity of novel MDR-TB treatment regimens. OBJECTIVES: We analysed pre-existing and emerging bedaquiline resistance in bedaquiline-based MDR-TB therapies, and risk factors associated with treatment failure and death. METHODS: In a cross-sectional cohort study, we employed patient data, whole-genome sequencing (WGS) and phenotyping of Mycobacterium tuberculosis complex (MTBC) isolates. We could retrieve baseline isolates from 30.5% (62 out of 203) of all MDR-TB patients who received bedaquiline between 2016 and 2018 in the Republic of Moldova. This includes 26 patients for whom we could also retrieve a follow-up isolate. MEASUREMENTS AND MAIN RESULTS: At baseline, all MTBC isolates were susceptible to bedaquiline. Among 26 patients with available baseline and follow-up isolates, four (15.3%) patients harboured strains which acquired bedaquiline resistance under therapy, while one (3.8%) patient was re-infected with a second bedaquiline-resistant strain. Treatment failure and death were associated with cavitary disease (p=0.011), and any additional drug prescribed in the bedaquiline-containing regimen with WGS-predicted resistance at baseline (OR 1.92 per unit increase, 95% CI 1.15-3.21; p=0.012). CONCLUSIONS: MDR-TB treatments based on bedaquiline require a functional background regimen to achieve high cure rates and to prevent the evolution of bedaquiline resistance. Novel MDR-TB therapies with bedaquiline require timely and comprehensive drug resistance monitoring.


Assuntos
Mycobacterium tuberculosis , Tuberculose Resistente a Múltiplos Medicamentos , Tuberculose , Antituberculosos/uso terapêutico , Estudos Transversais , Diarilquinolinas/uso terapêutico , Humanos , Mycobacterium tuberculosis/genética , Tuberculose/tratamento farmacológico , Tuberculose Resistente a Múltiplos Medicamentos/tratamento farmacológico , Tuberculose Resistente a Múltiplos Medicamentos/microbiologia
10.
JMIR Res Protoc ; 10(7): e26748, 2021 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-34259165

RESUMO

BACKGROUND: The lack of accurate and efficient diagnostic devices for extensively drug-resistant tuberculosis (XDR-TB) makes it a severe threat to global public health. A prospective clinical study in an intended-use cohort was designed to evaluate the Akonni Biosystems XDR-TB TruArray and lateral flow cell (XDR-LFC) to address this gap in tuberculosis diagnostics. OBJECTIVE: This paper presents the protocol for a study that aims to document the conceptualization and design of this evaluation method for early dissemination while data collection and analysis are ongoing. METHODS: The clinical study was conducted in three phases. The first phase was to observe changes in bacterial load and culture positivity in patient sputa over time and better understand the diversity of prospective clinical samples. The second phase was to prospectively collect clinical samples for sensitivity and specificity testing of the Akonni Biosystems XDR-LFC device. Lastly, the third phase was to explore the anti-TB drug concentrations in serum throughout the drug-resistant tuberculosis treatment. RESULTS: The methodology described includes the study design, laboratory sample handling, data collection, and the protection elements of human subjects of this clinical study to evaluate a potential new XDR-TB diagnostic device. A total of 664 participants were enrolled across the three phases. The implemented complex systems facilitated a thorough clinical data collection for an objective evaluation of the device. The study is closed to recruitment. The follow-up data collection and analysis are in progress. CONCLUSIONS: This paper outlined a prospective cohort study protocol to evaluate a rapid XDR-TB detection device, which may be informative for other researchers with similar goals. INTERNATIONAL REGISTERED REPORT IDENTIFIER (IRRID): DERR1-10.2196/26748.

11.
Respiration ; 100(9): 843-852, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34058739

RESUMO

Untreated active tuberculosis (TB) has a very high long-term mortality. Treatment of TB reduces mortality dramatically and should maximize cure, preventing ongoing transmission and TB sequelae. However, predicting the risk of failure and relapse is crucial for the management of individual patients and for the evaluation of effectiveness of programs. Various outcome definitions for drug-sensitive and drug-resistant TB were developed, implemented, and endorsed since introduction of TB chemotherapy by the World Health Organization (WHO), mostly based on culture and smear results. They should be applicable for individual patient care, surveillance, and research. Definitions with focus on program evaluation differ from definitions to evaluate the efficacy and effectiveness of regimens. Lack of sputum production at the later stage of treatment reduces the easy applicability of current definitions. Definitions of failure and cure are sometimes difficult to apply. Alternative approaches suggest culture positivity at 6 months or more of treatment as an indicator for failure. New definitions for cure including a relapse-free period posttreatment and reduced number of culture and smear results are considered. Increasing variation and individualization of treatment and its duration urgently require new approaches using pathogen- or host-specific biomarkers, which indicate risk of failure and define cure. Such biomarkers are under evaluation but still far from translation in clinical routine practice.


Assuntos
Mycobacterium tuberculosis , Tuberculose Resistente a Múltiplos Medicamentos , Tuberculose , Antituberculosos/uso terapêutico , Quimioterapia Combinada , Humanos , Resultado do Tratamento , Tuberculose/epidemiologia , Tuberculose Resistente a Múltiplos Medicamentos/tratamento farmacológico
13.
Eur Respir J ; 57(6)2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33334942

RESUMO

BACKGROUND: Evaluation of novel anti-tuberculosis (TB) drugs for the treatment of multidrug-resistant (MDR)-TB continues to be of high interest on the TB research agenda. We assessed treatment outcomes in patients with pulmonary MDR-TB who received bedaquiline-containing treatment regimens in the Republic of Moldova, a high-burden MDR-TB country. METHOD: We systematically analysed the SIMETB national electronic TB database and performed a retrospective propensity score-matched comparison of treatment outcomes in a cohort of patients with MDR-TB who started treatment during 2016-2018 with a bedaquiline-containing regimen (bedaquiline cohort) and a cohort of patients treated without bedaquiline (non-bedaquiline cohort). RESULTS: Following propensity score matching, 114 patients were assigned to each cohort of MDR-TB patients. Patients in the bedaquiline cohort had a higher 6-month sputum culture conversion rate than those in the non-bedaquiline cohort (66.7% versus 40.3%; p<0.001). Patients under bedaquiline-containing regimens had a higher cure rate assessed by both World Health Organization (WHO) and TBnet definitions (55.3% versus 24.6%; p=0.001 and 43.5% versus 19.6%; p=0.004, respectively), as well as a lower mortality rate (8.8% versus 20.2%; p<0.001 and 10.9% versus 25.2%; p=0.01, respectively). In patients who previously failed on MDR-TB treatment, >40% of patients achieved a cure with a bedaquiline-containing regimen. CONCLUSIONS: Bedaquiline-based MDR-TB treatment regimens result in better disease resolution when compared with bedaquiline-sparing MDR-TB treatment regimens under programmatic conditions in a country with a high burden of MDR-TB.


Assuntos
Diarilquinolinas , Tuberculose Resistente a Múltiplos Medicamentos , Antituberculosos/uso terapêutico , Humanos , Estudos Retrospectivos , Resultado do Tratamento , Tuberculose Resistente a Múltiplos Medicamentos/tratamento farmacológico
14.
Front Immunol ; 11: 566608, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33117351

RESUMO

Tuberculosis is a bacterial infectious disease that is mainly transmitted from human to human via infectious aerosols. Currently, tuberculosis is the leading cause of death by an infectious disease world-wide. In the past decade, the number of patients affected by tuberculosis has increased by ~20 percent and the emergence of drug-resistant strains of Mycobacterium tuberculosis challenges the goal of elimination of tuberculosis in the near future. For the last 50 years, management of patients with tuberculosis has followed a standardized management approach. This standardization neglects the variation in human susceptibility to infection, immune response, the pharmacokinetics of drugs, and the individual duration of treatment needed to achieve relapse-free cure. Here we propose a package of precision medicine-guided therapies that has the prospect to drive clinical management decisions, based on both host immunity and M. tuberculosis strains genetics. Recently, important scientific discoveries and technological advances have been achieved that provide a perspective for individualized rather than standardized management of patients with tuberculosis. For the individual selection of best medicines and host-directed therapies, personalized drug dosing, and treatment durations, physicians treating patients with tuberculosis will be able to rely on these advances in systems biology and to apply them at the bedside.


Assuntos
Antituberculosos/uso terapêutico , Mycobacterium tuberculosis , Medicina de Precisão , Tuberculose/tratamento farmacológico , Animais , Humanos
16.
BMC Infect Dis ; 20(1): 17, 2020 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-31910804

RESUMO

BACKGROUND: Recurrence of drug-resistant tuberculosis (DR-TB) after treatment occurs through relapse of the initial infection or reinfection by a new drug-resistant strain. Outbreaks of DR-TB in high burden regions present unique challenges in determining recurrence status for effective disease management and treatment. In the Republic of Moldova the burden of DR-TB is exceptionally high, with many cases presenting as recurrent. METHODS: We performed a retrospective analysis of Mycobacterium tuberculosis from Moldova to better understand the genomic basis of drug resistance and its effect on the determination of recurrence status in a high DR-burden environment. To do this we analyzed genomes from 278 isolates collected from 189 patients, including 87 patients with longitudinal samples. These pathogen genomes were sequenced using Illumina technology, and SNP panels were generated for each sample for use in phylogenetic and network analysis. Discordance between genomic resistance profiles and clinical drug-resistance test results was examined in detail to assess the possibility of mixed infection. RESULTS: There were clusters of multiple patients with 10 or fewer differences among DR-TB samples, which is evidence of person-to-person transmission of DR-TB. Analysis of longitudinally collected isolates revealed that many infections exhibited little change over time, though 35 patients demonstrated reinfection by divergent (number of differences > 10) lineages. Additionally, several same-lineage sample pairs were found to be more divergent than expected for a relapsed infection. Network analysis of the H3/4.2.1 clade found very close relationships among 61 of these samples, making differentiation of reactivation and reinfection difficult. There was discordance between genomic profile and clinical drug sensitivity test results in twelve samples, and four of these had low level (but not statistically significant) variation at DR SNPs suggesting low-level mixed infections. CONCLUSIONS: Whole-genome sequencing provided a detailed view of the genealogical structure of the DR-TB epidemic in Moldova, showing that reinfection may be more prevalent than currently recognized. We also found increased evidence of mixed infection, which could be more robustly characterized with deeper levels of genomic sequencing.


Assuntos
Antituberculosos/uso terapêutico , Farmacorresistência Bacteriana Múltipla/genética , Mycobacterium tuberculosis/efeitos dos fármacos , Mycobacterium tuberculosis/genética , Tuberculose Resistente a Múltiplos Medicamentos/tratamento farmacológico , Tuberculose Resistente a Múltiplos Medicamentos/epidemiologia , Sequenciamento Completo do Genoma/métodos , Adolescente , Adulto , Idoso , Antituberculosos/efeitos adversos , Feminino , Humanos , Incidência , Estudos Longitudinais , Masculino , Testes de Sensibilidade Microbiana , Pessoa de Meia-Idade , Moldávia , Mycobacterium tuberculosis/isolamento & purificação , Filogenia , Polimorfismo de Nucleotídeo Único/genética , Recidiva , Estudos Retrospectivos , Adulto Jovem
17.
Lancet ; 394(10202): 953-966, 2019 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-31526739

RESUMO

Drug-resistant tuberculosis is a major public health concern in many countries. Over the past decade, the number of patients infected with Mycobacterium tuberculosis resistant to the most effective drugs against tuberculosis (ie, rifampicin and isoniazid), which is called multidrug-resistant tuberculosis, has continued to increase. Globally, 4·6% of patients with tuberculosis have multidrug-resistant tuberculosis, but in some areas, like Kazakhstan, Kyrgyzstan, Moldova, and Ukraine, this proportion exceeds 25%. Treatment for patients with multidrug-resistant tuberculosis is prolonged (ie, 9-24 months) and patients with multidrug-resistant tuberculosis have less favourable outcomes than those treated for drug-susceptible tuberculosis. Individualised multidrug-resistant tuberculosis treatment with novel (eg, bedaquiline) and repurposed (eg, linezolid, clofazimine, or meropenem) drugs and guided by genotypic and phenotypic drug susceptibility testing can improve treatment outcomes. Some clinical trials are evaluating 6-month regimens to simplify management and improve outcomes of patients with multidrug-resistant tuberculosis. Here we review optimal diagnostic and treatment strategies for patients with drug-resistant tuberculosis and their contacts.


Assuntos
Antituberculosos/uso terapêutico , Tuberculose Resistente a Múltiplos Medicamentos/tratamento farmacológico , Antituberculosos/administração & dosagem , Esquema de Medicação , Farmacorresistência Bacteriana Múltipla/genética , Saúde Global , Humanos , Testes de Sensibilidade Microbiana/métodos , Mycobacterium tuberculosis/efeitos dos fármacos , Mycobacterium tuberculosis/genética , Tuberculose Resistente a Múltiplos Medicamentos/diagnóstico , Tuberculose Resistente a Múltiplos Medicamentos/epidemiologia
19.
Respirology ; 23(7): 656-673, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29641838

RESUMO

The emergence of antimicrobial resistance against Mycobacterium tuberculosis, the leading cause of mortality due to a single microbial pathogen worldwide, represents a growing threat to public health and economic growth. The global burden of multidrug-resistant tuberculosis (MDR-TB) has recently increased by an annual rate of more than 20%. According to the World Health Organization approximately only half of all patients treated for MDR-TB achieved a successful outcome. For many years, patients with drug-resistant tuberculosis (TB) have received standardized treatment regimens, thereby accelerating the development of MDR-TB through drug-specific resistance amplification. Comprehensive drug susceptibility testing (phenotypic and/or genotypic) is necessary to inform physicians about the best drugs to treat individual patients with tailor-made treatment regimens. Phenotypic drug resistance can now often, but with variable sensitivity, be predicted by molecular drug susceptibility testing based on whole genome sequencing, which in the future could become an affordable method for the guidance of treatment decisions, especially in high-burden/resource-limited settings. More recently, MDR-TB treatment outcomes have dramatically improved with the use of bedaquiline-based regimens. Ongoing clinical trials with novel and repurposed drugs will potentially further improve cure-rates, and may substantially decrease the duration of MDR-TB treatment necessary to achieve relapse-free cure.


Assuntos
Antituberculosos/uso terapêutico , Mycobacterium tuberculosis/efeitos dos fármacos , Tuberculose Resistente a Múltiplos Medicamentos/diagnóstico , Tuberculose Resistente a Múltiplos Medicamentos/tratamento farmacológico , Diarilquinolinas/uso terapêutico , Farmacorresistência Bacteriana Múltipla/genética , Quimioterapia Combinada , Saúde Global , Humanos , Testes de Sensibilidade Microbiana , Mycobacterium tuberculosis/genética , Tuberculose Resistente a Múltiplos Medicamentos/epidemiologia , Sequenciamento Completo do Genoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA